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MONOMIAL CONDITIONS ON RINGS 

BY 

LOUIS  H A L L E  R O W E N  

A B S T R A C T  

Drazin introduced the notion of pivotal monomial, a condition on the evalua- 
tions of monomials  in a ring, and characterized simple artinian rings as those 
primitive rings which have pivotal monomials .  In this paper we consider 
monomial  conditions related to pivotal monomials .  The two major  results are a 
characterization of prime Goldie rings in terms of pivotal monomials ,  and a 
characterization of the socle of a primitive ring in terms of generalized pivotal 
monomials .  

1. Preliminaries 

In this paper, all rings are associative, not necessarily with 1. Let R, R '  be 

rings, with 1 ~ R',  such that R is an R'-bimodule. Define Z{X} = free ring 

(without 1) generated by the countable set of noncommuting indeterminates 

X, ,X2 , . . . ;  Z {X; t }  = subring of Z{X} generated by X1, ' . ' ,X, .  Let ~ ( t ) =  

{monic monomials h G Z { X } [ h ~ X ,  . . .  X,, and degree h >=t}, ~-k(t)= 
7r(t)A Z{X;  k}. Say y ~ R '  is R-regular if yr~ 0 for all nonzero r in R;  y is 

strongly left R-regular if yr~ 0 and ry~ 0 for all nonzero r in R, and if, given 

b ~ 0  in R, there are nonzero al, a2 in Rsuch that aly =a2b (i.e. Ry is left 

essential). Weakening Drazin's definition [4] of strong pivotal monomial, we say 
X1 "" X, is (R',R)-pivotal (resp. almost (R',R)-pivotal) if, for each 

homomorphism q~: Z{X; t}---~ R, one can find a strongly left R-regular (resp. 

R-regular) element y of R',  such that y~0(X1 . . .  X , ) ~  R'~o(zr'(t)). Often R '  

will be the ring obtained by adjoining 1 formally to R;  i.e. R '  is the additive 

group Z Q R, endowed with multiplication (nl, rO(n2, r2) = 

(nln2, n,r2+ n2r~+rlr2), and the bimodule composition is given by (nl, rOr = 
n~r+r~r and r(n~,rO= rnl+rr~. In this case, (R',R)-pivotal (resp. almost 

pivotal) will merely be called R-pivotal (resp. almost pivotal). Clearly X~ is 

almost R-pivotal for R a domain, since ~o(X~)~o(X,)E ~o(zr'(1)). Drazin [4] 
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observed that every simple artinian algebra satisfies pivotal monomials, and 

proved a converse with respect to his definitions (cf. Section 5). Pivotal 

monomials are defined in terms of subsets of R, rather than in terms of elements 

(as in the case of polynomial identities). One way of circumventing this difficulty 

is as follows: 

Define ~ r ( t , n ) = { h ~ ' ( t ) [ d e g r e e h = < n } ,  a finite set. ( R ' , R )  is ( t ,n)-  

elementary if, foi" each r~, . .- ,  r, in R, one can find {yh ~ R ' I  h E 7r(t, n)} and 

strongly left R-regular  y in R' ,  such that yr~- �9 �9 r, + Eyhh( r l , . . - ,  r,) = 0. If R '  is 

the ring formed by adjoining 1 to R and if (R' ,  R )  is (t, n)-elementary, we shall 

say R is (t, n)-elementary. 

PROPOSITION 1. I f  R is an n-dimensional left vector space over a division ring 

D, then, for all t, t ' ~  n, R is ( t + 1, t' + t + 1)-elementary ; if, moreover, 1 E R, 

then R is (n,2n)-elementary. 

PROOF. For any r in R, clearly ET=+~ d,r' = 0 for suitable d, in D, not all 0. 

Z . . . .  1 d ' f  = 0 for suitable Multiplying by a suitable power of r, we have r'+~+ ,=,+2 

new d'~ in D, and the first assertion follows from a standard method of 

linearization (cf. [4]); the second assertion is analogous. Q.E.D. 

In particular, M , ( D ) ,  the n • n matrix ring over a division algebra D, is 

(n 2, 2n ~)-elementary. Clearly, if (R ~, RA) are (t, n)-elementary for all h ~ A, then 

(YIR', IIR~) is (t, n)-elementary. If R is (t, n)-elementary for suitable t and n, we 

shall say R satisfies an elementary condition. 

2. Prime rings with elementary condition 

The object of this section is to characterize left orders in simple artinian rings 

in terms of elementary conditions. For completeness, we state the definitions and 

theorems which will be used, all of which are in Jacobson [8]. 

An element r of R is regular if rr' ~ 0 and r ' r~  0 for all nonzero r' in R. A 

classical left quotient ring S of R is a ring containing R such that 

(i) all elements of S have the form r~lr2, r~ regular in R ;  

(ii) all regular elements of R are invertible in S. 

R has a classical left quotient ring precisely when for each rl, al in R, r~ 

regular, one can find r2, a2 in R, r2 regular, such that r2a~ = a2rl. (This is Ore's  

condition.) If S is a classical left quotient ring of R, we say R is a left order in S. 

Given subsets V , W  of R, define A n n v ( W ) = { r ~ V I W r = O  } and 

Ann( , (W) = {r E V[ rW = 0}. (If V = R then we just write Ann W and Ann'  W.) 

A set U = Ann W (resp. = Ann'  W) is called a right (resp. left) annihilator and 
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is a right (resp. left) ideal of R. U is proper if 0 ~ U #  R. For  any  left annihi la tor  

L, A n n '  (Ann  L )  = L ; for  any  right annihi la tor  L ' ,  A n n  (Ann '  L ' )  = L ' .  Hence ,  

for  left annihi la tors  Lt  D Lz, we have  A n n  L~ C A n n  L2. ( D ,  C will deno te  strict 

set con ta inment . )  Gold ie  has p roved  that  R has a s imple  ar t inian (classical) left 

quot ien t  ring precisely when:  

(i) R is pr ime;  

(ii) every  strictly increasing chain of left annihi la tors  in R is finite; 

(iii) R does  not  contain an infinite direct  sum of left ideals. 

Such a ring R is called a prime left Goldie ring. We shall also need  the 

FAITH-UTUMI THEOREM. A n y  order in M , ( D ) ,  D a division ring, contains a 

subring of  the form Mn(T) ,  T a domian  with left quotient ring D. 

If R is a left o rder  in S, then,  for  any s~, �9 �9 s,. in S, one  can find r~, �9 �9 r,,, r in 

R, r regular ,  such that  s~ = r-~r~, 1 <= i <-_ m. Hence ,  the fol lowing result  is an 

i m m e d i a t e  consequence  of the definitions: 

PROPOSITION 2. I f  R is a left order in a ring satisfying an elementary condition, 

then R satisfies an elementary condition. 

In part icular ,  every  p r ime  left Gold ie  ring satisfies an e l emen ta ry  condit ion.  

We  shall p roceed  to p rove  the converse ,  that  every  pr ime ring with e lmen ta ry  

condi t ion is left Goldie .  Ha l f  of this result  is qui te  s t ra ight forward.  

PROPOSITION 3. Suppose R is prime and X t "  �9 �9 X,  is almost  (R ' ,  R)-pivotal .  

Then every chain o f  left annihilators in R has length at most  t + 1. 

PROOF. Suppose  there  is a chain of p r o p e r  left annihi la tors  L1 C L~ C �9 �9 �9 C L,, 

and let T, = A n n  L,, 1 _--< i _--< t. Pick arbi t rar i ly  x, in T~Lj for  all ] _-< t. Since x,xj = 0 

for  each i _-<j, the only possible  nonzero  p roduc t  of length_-> t of the x~ is 

x,x, ~ �9 �9 �9 xl. Hence ,  by definit ion of a lmost  pivotal  monomia l ,  yx, �9 �9 �9 x~ = 0 for  

some  R - r e g u l a r  y. Thus  x, . .  �9 xl = 0, so 0 = T,(L,T,_I)(L,_IT,_2) 

�9 �9 �9 (L2TOL~. But  each L,T,_~ is a nonzero  ideal of R, con t ra ry  to the fact R is 

pr ime,  so there  cannot  be  a chain, of length t, of p r o p e r  left annihi lators .  Since 

the only i m p r o p e r  annihi la tors  are R and 0, the asser t ion follows. Q . E . D .  

NOTE. All chains of left annihi la tors  of  a ring have  length =< t + 1, if and only 

if all chains of right annihi la tors  have  l e n g t h - < t +  1. Indeed ,  suppose  

7"1 C T2 c . . .  C T,+2 is a chain of right annihilators .  Then  A n n '  T~ D A n n '  T2 D 

�9 . .  ~ A n n '  T,+2 is a chain of left annihilators ,  p roving  (=>) ; ( ( : : : )  is shown 

analogously�9 

To  p roceed  fur ther ,  we require  some  easy facts abou t  annihi lators .  
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PROPOSITION 4. Assume all chains of left annihilators in R have length <= n, 

and let L~ C �9 �9 �9 C L,  be a chain of left annihilators in R. 

(i) Any  chain of left (resp. right) annihilators in the ring L, has length <-_ i. 

(ii) I f  R is semiprime then L~ C . . .  L, is a chain of left annihilators in L, of 

maximal length. 

PROOF. 

(i) Suppose A ~ C . . .  CA~+~ is a chain of left annihilators in L ,  Then  

A n n  A~ 3 �9 �9 3 A n n  A~+~ _~ A n n  L, 3 �9 �9 �9 3 A n n  L,  are right annihilators in R, 

producing  a chain of length n + 1 of right annihilators of R, cont rary  to 

hypothesis.  The  assertion for right annihilators follows. 

(ii) In view of (i), we need only show that each Lj is a left annihi lator  in L~, 

for  j ~ i. Let  L = L~, Tj = AnnLj ,  Aj = AnnLLj  = L fq ~ ,  A ; =  Ann'A~.  Now 

L~ C_ A ' /~ L. Moreover ,  ((A; fq L )Tj)2 C_ (A ; fq L )(T~L )Tj C (A ; fq L )AsT~ = 0, 

so A ~ fq L C_ A n n '  T~ = L i (since R is semiprime).  Thus  Lj = A ; r L = Ann~.A~, 

proving L~ is a left annihilator  in L. Q .E .D .  

PROPOSITION 5. I f R is prime and X ~ . . .  X, is R-pivotal, then R does not 

contain an infinite direct sum of left ideals. 

PROOF. By Proposi t ion 3, there exists a chain of left annihilators L0 C . . .  C 

L.§ of maximal  length (with L o - - 0  and L , ~ =  R) .  Let  T , - - A n n L , ,  0 <- i_-< 

n + 1. We  are done  unless L..~ contains an infinite direct  sum of left ideals of R. 

Thus,  we assume inductively that L~§ contains an infinite direct sum of left ideals 

of R and we claim that L~ contains an infinite direct sum of left ideals of  R. 

Let  L = L,+~, and let B = Ok  Bk C L be an infinite direct sum of left ideals of 

R. We  search for a nonzero  e lement  of L~ N B. For  each k, note  that  T~BE ~ T~+~ 

(for otherwise LT~Bk = 0, implying LT, = 0, contrary  to L~ being a left an- 

nihilator);  hence  we can pick nonzero  XE in T~Bk - T~+~. Clearly L D Anni~ XE D_ 

L.  But,  by Proposi t ion 4(ii), L is a maximal  annihi lator  in L, so Li = Ann• xk. 

Define r  Z { X ;  t} ~ R via r (Xk) = xk, all k. By definition of pivotal monomial ,  

there  exists strongly left R- regu la r  .y in R '  such that yx~. �9 �9 x, E R '~ (zr' (t)). But  

compar ing  componen t s  of B .yields y x l " ' x ,  E R ' r  1))x,, i.e. 

( yx~ . . . x , _~ -  r)x, = 0 for some r in R ' ~ ( ~ r ' ( t -  1)). Hence  ( y x l . . . x , - l -  r ) ~  

B A A n n x , = B N L I ,  so our  search is done  unless yx~. . .x ,_~=r,  i.e. 

y x ~ " . x , - 1 E R ' r  Cont inuing in this way, we obtain  a nonzero  

e lement  of L, N B unless yx~ E R'r i.e. yxz = dx~ for  some d in B. 

Since B is a direct sum, d E B~ O "  �9 " � 9  B,, for some m. Choose  nonzero  b in 

B,,+~. By definition of y, we can choose  nonzero  a~, az in R such that a~y = a:b. 
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Then aldx~ = a2bxl, so a ~ d - a 2 b  ~ B fq Annx ,  = B fq G. Thus our search is 

done unless a t d =  a2b. Matching components in B, we get a2b = 0, implying. 

a ,y  = 0, contrary to y strongly left regular. 

Thus we have a nonzero element bl of L~ N B. But b~ E B1 ~)''" ~)nm for 

some m ; letting B '  = ~) {Bk I k > m }, we apply the same argument to obtain 

nonzero b2 in L~ A B'.  Continuing this process gives us b~,b2, . . . ,  and 

0 {Rbj I 1 =< j < ~} is an infinite direct sum of nonzero left ideals of R, contained 

in G. This establishes the claim; applying the claim repeatedly gives an infinite 

direct sum of nonzero left ideals contained in Lo -- 0, which is ridiculous. Hence 

R cannot have contained an infinite direct sum of left ideals. Q.E.D. 

Putting the various propositions together yields; 

THEOREM 6. The following are equivalent for a prime ring R : 

(i) X1. . . X, is R-pivotal. 

(ii) R is a left order in M,  (D),  for suitable division ring D and some n <-_ t. 

(iii) R is (t, m)-elementary for some m. 

PROOF. 

(i)::> (ii) By Propositions 3 and 5, R is left Goldie, so R is a left order in 

M, ( D) ,  for a suitable division ring D. Hence, by the Faith-Utumi Theorem, R 

contains a subring Mn(T).  Letting {e, I1 _-< i,j <-_ n} be a set of matrix units, 

choose some x in T, and let ro = 0, r, = e,lx + . . .  +e ,x  for i > 0 .  Clearly 

Ann'  ro D Ann'  r~ D �9 �9 �9 D Ann'  r, in R, so, by Proposition 3, n + 1 -< t + 1. Hence 

n e t .  

( i i ) ~  (iii) Immediate,  by Proposition 2. 

( i i i )~  (i) By definition. Q.E.D. 

Theorem 6 is a characterization of prime Goldie rings, in terms of elementary 

conditions, so the object of this section has been achieved. Theorem 6 can be 

generalized to semiprime rings, using a technique due to Herstein, in his proof of 

Goldie's theorem for semiprime rings (cf. [7, pp. 174-176] or [8, appendix B]). 

THEOREM 7. The following are equivalent for a semiprime ring R : 

(i) R satisfies the ascending chain condition on annihilators of 2-sided ideals, 

and X1. . " X, is R-pivotal. 

(ii) R is a left order in a finite direct sum of matrix rings of degree <-_ t over 

division rings (in particular, R is semisimple artinian ). 

(iii) R satisfies the ascending chain condition on annihilators of 2-sided ideals, 

and R is (t, m)-elementary for some m. 
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The only nontrivial implication in Theorem 7 is (i) => (ii); in this case R can be 

viewed as a subdirect product of the minimal annihilators (of 2-sided ideals), 

each of which is a prime ring. The proof then parallels closely Herste in 's  proof  

cited above, and will be omitted. 

3. Semiprime rings with almost pivotal monomial 

The purpose of this section is to extend some of the structure theory of 

semiprime rings with polynomial identity to the theory of semiprime rings with 

almost pivotal monomial .  (Note that this theory includes noncommutat ive  

domains.) 

In this section, R is a semiprime ring, and R '  is the ring with 1 formally 

adjoined to R. 

LEMMA 8. Suppose X1 �9 �9 �9 X,  is almost  R-p ivo ta l  and  V is a subset o f  R.  Then  

Ann '  W = Ann '  V i+1 and Ann W = Ann V j§ for all j >= t. 

PROOF. Clearly it suffices to prove the lemma for j = t. Let Ai = Ann '  W, all 

i. For any k > i, A k v E 7  ~ C__ A ,  so A k V  k-I C_ A~V ~-1. Pick x~ in W A i ,  each i. Since 

x~xk = 0 for i <- k, the only possible nonzero product,  of length ->_ t, of the x~ is 

x,x,_~ �9 �9 �9 x~. By definition of almost pivotal monomial,  yx,x,-i �9 �9 �9 xt = 0 for some 

R-regular  y; hence x, �9 �9 �9 xt = 0. Thus, 0 = ( V ' A , ) .  �9 �9 ( V A  0 = 

V ' ( A , V ' - ' ) . . . ( A z V ) A ~ ,  implying (A,+~V' ) '+ '=0 .  But R is semiprime, so 

A,+~ C_ Ann'  V'  = A,. Hence  A,+, = A,. One proves analogously that Ann V'  = 

Ann V '+~. Q.E.D.  

In particular, if V is nilpotent then, in the notation of Lemma  8, Ann V'  = 

Ann V '+1 = Ann V '+2 . . . . .  R, proving V' = 0. Recall that a left (resp. right) 

ideal is essential if it intersects nontrivially all left (resp. right) ideals. The left 

singular ideal Z ( R R )  -- {r ~ R t Ann'  r is (left) essential}, easily seen to be an 

ideal of R ; the right singular ideal Z ( R R )  =-- {r E R I Ann r is essential}. Using a 

trick of Amitsur  (cf. [8, ch. X, sec. 8]), we shall now obtain generalizations of 

theorems of Amitsur  and of Fisher [5]. 

THEOREM 9. Suppose X ~ . .  �9 X,  is almost  R-pivotal .  

(i) Every  nil subring of  R is nilpotent o f  degree <-_ t. 

(ii) Z ( R R ) =  Z ( R R ) = O .  

PROOF. 

(i) Let B be a nil subring of R. Since each element of B is nill~otent, L e m m a  

8 implies b ' =  0 for all b in B. Hence,  by a theorem of Levitzki, B is locally 
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nilpotent. Hence,  for any b , . . . ,  b, in B, {b~,. . . ,  b,} is nilpotent, implying 

b , . . .  b, = 0, by Lemma 8. Therefore  B ' =  O, proving (i). 

(ii) Let Z = Z(RR).  We claim x'  = 0 for all x in Z. Indeed, if x ' #  0, we can 

choose nonzero b in Rx '  f3 Ann'  x. Let b = rx'. Then r E Ann'  x'+~ = Ann'  x '  (by 

Lemma 8), implying 0 =  rx '=  b, a contradiction. This establishes the claim; 

hence Z is a nil ideal of R. By (i), Z is nilpotent, implying Z = 0. The proof 

Z(RR)  = 0 is analogous. Q.E.D. 

Theorem 9 (ii) implies that any semiprime ring with almost pivotal monomial 

has a maximal left quotient ring and a maximal right quotient ring, although 

these clearly need not be the same, as evidenced in particular by the existence of 

left Goldie domains which are not right Goldie (cf. [6]). 

4. Restricted pivotal monomials and generalized pivotal monomials 

DesMarrais [3] has introduced the notion of a restricted pivotal monomial, 

which can be put into the framework of this paper as follows: Let r 

{muitilinear monomials in 7r(t, t)}; X I ' "  X, is restricted (R' ,  R)-pivotal if, for 

each homomorphism ~: Z{X}---, R, r  .. �9 X,)  E R'~(Trl(t)). This notion is 

very strong, per se, perhaps too strong as it stands. In fact, I believe that it is an 

open question whether or not all simple artinian rings satisfy restricted pivotal 

monomials. However,  restricted pivotal monomials generalize very usefully, 

giving us a way to characterize the socle of a primitive ring. 

Let S be a ring and S{X} denote the free product of S and Z{X}.  Note that 

each element of S{X}  is the (not necessarily unique) sum of elements of the form 

r~X~,r2X,2" .X~,r,+~, r~ in S, X~ noncommuting indeterminates, t = 1 ;  such an 

element is called a rnonomial with fingerprint X~ 1 �9 �9 �9 X,,, and the r~ will be called 

the coefficients. A generalized monomial of S{X}  is an element of S{X} which 

can be written as a sum of monomials with all the same fingerprints; it is not hard 

to see that every element of S{X}  can be written uniquely as a sum of 

generalized monomials. A generalized monomial of S{X}  is multilinear if its 

fingerprint is multilinear. 

It this section we assume, as in Section 1, that R is an R'-bimodule,  wi th the  

added condition that all possible associativity relationships hold between R and 

R': homomorphisms from R'{X} to R will mean ring homomorphisms preserv- 

ing the R '-bimodule structure and the associativity conditions. All homomorph-  

isms from R'{X} to R are determined by the action on the X~ ; conversely, given 

r~,r2,.-, in R, there is a unique homomorphism tp :R '{X}- -*R such that 

(X,) = r,, all i. 
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Let  ~-l(t; S, W) = {generalized monomials of S{X}  with fingerprints in 7rl(t) 

and coefficients in a finite subset W of S}. X ~ . . .  X, is generalized (R' ,  R)-  

pivotal if there exists (finite) W C R '  and a generalized monomial h in R ' iX}  

with fingerprint X ~ . . .  X, such that, for each homomorphism r 

~p ( h ) E  R '~p (Zrl(t ; R ', W)). (Compare with Amitsur [2] and DesMarrais [3].) Call 

h a generalized pivotal monomial of (R ', R ) and call each ~ (h) an evaluation of 

h. Note that we have in fact generalized the notion of restricted pivotal 

monomials (where W = {1}) for reasons that will begin to come clear in the 

subsequent paragraphs. 

Consider the following situation through Theorem 11, using Jacobson [8, ch. 

II] as a general reference on primitive rings. R is left primitive; i.e. R has a 

faithful irreducible left module M. Let D = EndRM, a division ring, and let R '  be 

the subring of E n d M o  generated by 1 and R (which is dense in E n d M o ) .  

Viewing R '  and D naturally in End zM, let S = R 'D.  Note that rd = dr for all r 

in R' ,  d in D, and M is an S-module, under the action (E,r,d,)z = E, (riz)d,, r~ in 

R' ,  d~ in D, z in M. 

Define soc R to be 0 unless R has nonzero minimal left ideals, in which case 

soc R is the sum of all nonzero minimal left ideals. If R is left primitive and L is 

a minimal left ideal of R, then L contains an idempotent element e and eRe is a 

division ring. Hence X1 is restricted eRe-pivotal, implying eXle is a generalized 

pivotal monomial of R. Note that all evaluations of eX~e clearly lie in soc R ; the 

main result of this section is that all evaluations of all generalized pivotal 

monomials of R lie in soc R. 

Note the canonical injections R':c-->S and D:c--~ S induce homomorphisms 

~b~: R' iX}--->SiX} and ~b2:D{X}--->SiX}. Let R ' { X } D  denote the additive 

subgroup of S i X }  generated by elements of the form tO~f(X~,.. ", Xm)t~2d, f in 

R'{X}, d in D. For ease of notation, we shall merely write a typical element of 

R '{X}D as Ef~d~, f~ in R' iX},  d~ in D. Note that all generalized monomials and 

multilinearizations of elements of R'{X}D are still in R'{X}D. 

The reason behind the above machinations is that we cannot perform the 

usual "splitting" of a primitive ring and still be sure (a priori) of preserving its 

generalized pivotal monomials; hence we must always work in the context of M 

as a vector space over D. Let subspace denote finite-dimensional D-subspace of 

M. A generalized monomial h (X~, . . . ,  X , , ) o f  R ' { X } D  is (V, (u~))-dominated if 

there exist subspaces V1, �9 �9 -, V,, of respective dimensions u~, �9 �9 Urn and a finite 

set W C S such that, for every homomorphism q~ : S{X}--~ S with ~0 (X~) E R and 

~o (X~) V, = O, 1 <= i <- m, and given z in M, we can find r in R 'q~ (zr~(m ; S, W)) 

such that ~o(h)z - rz E V. We shall call W the coefficient set o fh  and the V~ will 
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be called the associated subspaces (to (V,(u~)). If h, and h~ have fingerprint 

X~ �9 �9 �9 X,, and are (V, (u~))-dominated with the same associated subspaces, then 

clearly h, + h~ is (V, (u, ))-dominated. 

Assume a generalized monomial h of R ' { X } D  has fingerprint X t . . .  X,. for 

suitable m. We can write h = Z7 ~hj(X, , . . . ,  X~_~)X,,si, suitable h~ in R'{X} ,  st in 

S, with v minimal, and define ht(h) inductively by h t ( s )=  1 for all s in S and 

ht(h) = the smallest possible value of mZ,  ht(h,), h written as above. 

THEOREM 10. Suppose V i s a  subspace of dimension uo and h (X, , .  �9 Xm) is a 

generalized monomial of R '{X}D, with fingerprint X~ .. �9 Xm, which is (V, (u,))- 

dominated for some u~, . �9 u,,. Let y = ht(h), u = max (Uo, u~, . �9 u,. ). There is a 

function ";, (y)  such that, for each x~ , ' . . ,  x~ in R, rank h ( x , , . . . ,  Xm)<--"r, (y). 

PROOV. Let V , , . . . ,  V,, be the associated subspaces (to (V, (u,))), and let W 

be the coefficient set of h. Write h =ZT=lhj(X~,.. . ,X,._1)X,~s j such that 

mY.h t (h j )=y .  We may assume s j M C V , , ,  t< j<=v ,  t minimal within this 

context. Also, expanding W if necessary, we may assume that each sj @ W, 

1 ~ / =< v, and we list the elements of W as {sk I 1 =< k =< n}, where n -=- card W. 

Now the proof will follow that of [11, theor. 1]. Define r ,(0) ~- 0, all u, and define 

inductively ~-u(),)= m a x ( u % 2 r , + , ( y -  1), r,,(y'), all u ' <  u, all y'_-< y). If y = 1 

then Theorem 10 is immediate; we work inductively on y. 

Let h'='Z~-lhiX,,sj, h "= h - h ' .  Clearly h" is (0, (u, ))-dominated, so h '  is 

(V, (u, ))-dominated, and h t ( h ' ) +  ht(h") = y. If h ' ~ 0  and h " ~  0, then h t h ' <  

and h t h " < y ;  then, for any Xl,-- . ,x , ,  in R, r a n k h ( x ~ , - - - , x , . )  

r , (h th ' )+z , (h th")<=2"r~(y-1)<=r~(y) .  If h " = h  then rankh(x l , . . . , x , , )<= 

uy <= .c, (y), all x,. So we are done unless h "= O, i.e. t = v. 

Hence s , z ~  V,, for some z in M. Now choose z '  arbitrarily in M. By density, 

there exists x,, in R, d l , . . . , d ,  in D with d ~ = l ,  such that x,,V,.---O and 

x,,skz = z'dk, all t, 1 =< k =< n. Moreover,  the dk are independent of the choice of 

z'. Let h~=Ej=~hsdj; ~ V~'= V~+~kskzD, l < i < m - l , =  = and let u~'=dimV~='< 

u, + n. We claim h ~(X~,..., X,,_~) is (V, (u'~))-dominated, with associated sub- 

spaces V',. Indeed, suppose we are given x~,...,xm_~ in R such that x~V'~=O. 

Define q~:S{X}---~S via q~(X~)= x,, l < = i < = m - 1 ,  q~(X,,)= x,,, and ~ ( X ~ ) = 0  

for i > m .  Since h is ( V, (u, ))-dominated, there exists r in R'~o(~r~(m;S, W))  

such that h ( x ~ , . . . , x ~ ) z - r z  E V. Now, by choice of the x~, rz has the form 

Ekrkx,,skz, r~ in R'q~(~rz(m-1;S,  W)) and sk in W. Then rz =Erkx,,skz = 

Erkz'dk = (Erkdk)z'. Let r ' =  Erkdk and let W' = {s~d s I 1 <= k , j  -< n}, a finite set of 

order n 2. Then r ' ~ R ' q ~ ( r r ~ ( m - 1 ; S , W ' ) )  and h l ( x ~ , . . . , x , , _ ~ ) z ' - r ' z ' =  
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h ( x l , ' " , x m ) z - r z  E V. So, given z ' in  M we have found r' in R ' ~ ( ~ r ~ ( m - 1 ;  

S, W')) such that h '~(x , . . . ,  xm_,)z' - r'z'  ~ V, proving the claim. 

For m = 1, ht(h~) = 1; for m > 1, ht(h~)_-< 3"/m. Thus ht(h()=< 3 ' -  1. There- 

fore, for all x~, . . . ,xm_, in R, rankh~(x,.. . ,xm_O<=.c.+,(3' - 1). Now let /~ = 

E7=2hjXm(sj -djs~), which has height =< 3 ' -  m. Now, for any xm in R, h~xms, is 

(V,(u'~))-dominated. On the other hand, for all x , , . . - ,xm in R, 

t~ (x,, . . ., xm ) = ~.~-,hj (x,, . . ., x~-,)xmsj - Y,~=,hj(x,, . . ., xm_,)d~xms, 

= h ( x l , ' . . ,  xm) - h ' l(xl ," ", x,,-i)xmsl. 

Hence, setting u ' =  u,,, we see that /~ is (V,(u'~))-dominated. Thus for all 

x , , . - . , x , ,  in R, r a n k / ~ ( x , . . . ,  xm) = < ~-,+, (3' - m), implying rank h(x~, . . . ,  xm) = < 

rankl~(x, , . . . ,x , , )+rankhI(x, , . . . ,xm_~)<=2r.§ proving the 

theorem. Q.E.D. 

Now every generalized pivotal monomial is (0,(0))-dominated, so we get 

immediately 

THEOREM 11. Every evaluation of a generalized pivotal monomial of a 

primitive ring lies in the socle. 

A generalized monomial h is R-proper if h is not a generalized identity of R 

(cf. [10, 11]). Theorem 11 contains the following result which is closely related to 

Amitsur [2]: 

COROLLARY 12. I f  a primitive ring R has a proper generalized pivotal mono- 

mial, then soc R ~ 0. 

An interesting aspect of Theorem 11 is that it defines the socle of a primitive 

ring to be the set of evaluations of generalized pivotal monomials. This suggests 

that we define the upper socle B ( R )  to be the set of evaluations of generalized 

pivotal monomials of R. Two questions which come to mind if R is prime are: 

(1) If B ( R ) ~ O ,  is the central closure of R (cf. [9]) a primitive ring with 

socle? 

(2) If 1 E B ( R ) ,  is R left Goldie? 

We shall proceed in a slightly different direction. Define the index of a simple 

artinian ring M , ( D )  to be n. 

THEOREM 13. Let R be semiprimitive with 1 E R, and let {R~ 1 3' E F} be a set 

o[ (left) primitive homomorphic images of R. I f  R satisfies a generalized pivotal 

monomial which is proper for each nonzero homomorphic image R~, then 

{R~ 1 3' E F} is a collection of simple artinian rings of bounded index. 
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PROOF. Let h be a generalized pivotal monomial of R which is proper  for 

every nonzero homomorphic  image R v. Given r in R, let r v denote the canonical 

homomorphic image of r in Rv. Each Rv has a faithful irreducible left module My 

with centralizer D r ; viewing R v C End ( M v ) o  ~, let A = {r E R l {rank rvl3' E F} 

is bounded}, an ideal of R. If A ~ R then A C P for some maximal ideal P of R. 

But h is R / P - p r o p e r ,  contrary to Theorem 10. Thus A = R, so ! @A, i.e. 

{rank l v l Y E F} is bounded. Thus each R~ is simple artinian, with index-< 

max (rank 1 v ] 3' E F). Q.E.D. 

5. Comparison of definitions 

In the notation of Section 1, say XI  �9 �9 �9 X ,  is absolutely  ( R ' ,  R ) - p i v o t a l  if, for 

each homomorphism ~0: Z { X ; t } ---~ R,  ~o ( X~ . �9 �9 X ,  ) E R ' ~o ( Tr' ( t ) ). This defini- 

tion is equivalent to Drazin's definition of what he calls strongly pivotal 

monomials, so, in particular, a primitive ring R is simple artinian of index =< t if 

and only if X ~ . . .  X ,  is absolutely R-pivotal (cf. [4]). The obvious question that 

arises in correlating this paper to [4] is, "Do  prime rings with pivotal monomial 

satisfy absolutely pivotal monomials?" We shall see shortly that the answer is 

negative, but first let us show that existence of almost pivotal, pivotal, or 

absolutely pivotal monomials is equivalent on primitive rings with socle: 

LEMMA 14. I f  R is a primit ive ring with soc R ~ 0 a n d  if  X~ . �9 �9 X,  is a lmos t  

R-p ivo ta l ,  then R is s imple  art inian o f  index  <= t. 

PROOF. Indeed, if the conclusion does not hold, then R contains a subring T 

isomorphic to M,+1(D),  for a suitable division ring D. Let {e~j I 1 _-< i , j  <= t + 1} be 

a suitable set of matric units of T, and define q~: Z{X; t}--~ R via q~(X~) = ei. i+1. 

By definition of almost pivotal monomial (and since e,,,.leu+~ = 0 for j ~  i + 1), 

we see that ye12e23 - " " e .... ~ = 0 for some R-regular  y in R' .  But then 0 ~ yeL ,+1 = 

ye12"..e,.,+,, a contradiction. Hence R must be simple artinian of index --< t. Q.E.D. 

Now consider the following very well-known example: Let B be the ideal of 

Q{X; 2} generated by X ~ X :  - X 2 X ,  - 1, and let R = Q{X; 2}/B, the free ring on 

two generators modulo the relation X 1 X 2 -  X 2 X I  = 1. One verifies easily that R 

is simple and is a domain. However,  R is left and right Goldie, as can be seen 

without much difficulty. (Indeed, given f ( X , )  and g(X~,  X2), one can show, by 

induction on the degree of X2 in g, that f and g have a common left multiple. 

Hence the set of polynomials in X~ is an Ore set of R and may be formally 

inverted to form a ring R,. But R, is a principal left ideal domain and is therefore 

left Goldie; it follows that R is left Goldie.) 
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S ince  R is a left G o l d i e  d o m a i n ,  Xj  is R - p i v o t a l .  O n  the  o t h e r  h a n d ,  if R 

sat isf ied an  a b s o l u t e l y  p ivo ta l  m o n o m i a l ,  t h e n  R w o u l d  be  a s imple  a r t i n i a n  

d o m a i n ,  i.e. a d iv i s ion  r ing ,  which  is o b v i o u s l y  false.  T h u s  we have  a c o u n t e r -  

e x a m p l e  to the  q u e s t i o n  ra ised  ea r l i e r  in this sec t ion .  M o r e o v e r ,  soc R = 0, by  

L e m m a  14. Thus ,  a left o r d e r  in a s imple  a r t i n i a n  r ing  m a y  have  socle 0, which  is 

s u r p r i s i n g  in l ight  of T h e o r e m s  6 a n d  11. 
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